Negative Pressure Wound Therapy

Waylon Wiseman
B. Sc (Hons.), DVM
Resident in Small Animal Surgery
Case - Taxi

• ‘Taxi’ Rainbow
 – 5 yo FE boxer
 – Recently whelped – presented with septic mastitis
 – Mastectomy of the affected glands performed
 – Recovery uneventful
Case - Taxi
NPWT Principles

• What is it?
 – Application of a vacuum evenly distributed across the surface of a wound, typically through an open cell foam dressing
 • Open cell foam (typically polyurethane)
 • Occlusive drapes
 • Vacuum tubing and pump
Case - Taxi
Case - Taxi
NPWT Principles cont...

• Vacuum
 – Can program different pressures
 • -125 mmHg most common
 • -75 mmHg used for skin grafts

– Modes
 • Continuous
 • Intermittent
NPWT Principles cont...

 – Established -125 mmHg as the standard level of subatmospheric pressure
 • Based on local blood perfusion studies at variable pressures
 – Suggested intermittent vacuum may be more effective than continuous
 • Controversial
NPWT Principles cont...

• Continuous vs intermittent
 – Literature inconclusive
 – Intermittent may be more effective in stimulating fibroplasia and neovascularisation
 – However, more painful, not tolerated in cats
 – For now, continuous dominates veterinary literature
NPWT Principles cont...

 - Evaluated split thickness graft incorporation at varying subatmospheric pressures
 - Demonstrated equivalent clinical outcomes at -75 mmHg as compared to -125 mmHg
 - Benefits of reduced subatmospheric pressure
 - ↓ pain
 - ↓ secondary skin reaction
 - ↓ risk of venous occlusion
 - ↓ risk of nerve compression
NPWT Mechanisms

- Macrodeformation and microdeformation theory

NPWT Mechanisms cont...

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF, IL-1β, MMP-1, -2, -9, -13</td>
<td>↓</td>
</tr>
<tr>
<td>VEGF, FBGF-2, TGFβ, PDGF, IL-8, IL-10</td>
<td>↑</td>
</tr>
</tbody>
</table>
NPWT Mechanisms cont...

• Glass et al.
 – Mechano- and chemoreceptor mediated cell signalling
 • Results in angiogenesis, ECM remodelling and deposition of granulation tissue
 – Modulation of cytokines to an anti-inflammatory and pro-repair profile
NPWT Benefits

• Modulate inflammatory and proliferative response to injury
 – Decrease interstitial edema
 – Earlier appearance of granulation tissue
 – Promote blood flow to affected area
 – Improves flap survival

• Remove wound exudate

• Draw wound edges together
NPWT Benefits cont...

- Reduced frequency of bandage changes
- Shorten time to definitive reconstruction
- Decrease total labour
- Earlier discharge from hospital
- Cost benefit
- **Bacterial clearance??**
Practical Applications

• Extensive...
 – Acute and chronic wounds
 • Degloving injuries, shearing wounds, decubital ulcers, bite wounds...
 – Abscesses
 – Burns – *silver impregnated foams*
 – Surgical dehiscence
 – Skin flaps and grafts
 – Extravasation
 – And more...
Novel Applications and Recent Literature

• Or et al. *Negative pressure wound therapy using polyvinyl alcohol foam to bolster full-thickness mesh skin grafts in dogs* – *Vet Surg* 2017; **46**: 389-395

– NPWT and free skin grafting
 • Optimal contact between skin graft and recipient bed
 • Immobilisation
 • Rapid development of granulation tissue in mesh holes
 • Drain fluid under graft
 • Reduce risk of graft necrosis
 • Isolate wound from external environment
Novel Applications and Recent Literature

- Or et al. cont...

<table>
<thead>
<tr>
<th>Polyurethane foam</th>
<th>Polyvinyl alcohol foam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrophobic</td>
<td>Hydrophilic</td>
</tr>
<tr>
<td>Dry</td>
<td>Pre-moistened</td>
</tr>
<tr>
<td>Pore size 400-600 um</td>
<td>Pore size 60-270 um</td>
</tr>
</tbody>
</table>
• Or et al. cont...
 – Outcomes
 • n=8; 7 successful with ‘excellent’ graft take
 • One failed – had 85% circumferential skin loss on antebrachium prior to grafting
 – Recommendations
 • Change bandage q5-7 d
 • -125 mmHg 3 days, then -75 mmHg thereafter
Novel Applications and Recent Literature

• Coutin et al. *Cefazolin concentration in surgically created wounds treated with negative pressure wound therapy compared to surgically created wounds treated with nonadherent wound dressings* – *Vet Surg* 2015; 44: 9-16

 – Most controversial reported benefit – *antibacterial effect*
Novel Applications and Recent Literature

- Coutin et al. cont...
 - Prospective, controlled experimental study
 - 12 beagles
 - Full thickness cutaneous wounds
 - NPWT or non-adherent bandages
 - Cefazolin 22 mg/kg IV q 8 hours
 - Tissue cefazolin concentrations measured
Novel Applications and Recent Literature

- Coutin et al. cont...

Conclusion: No statistical difference in cefazolin tissue concentration when comparing wounds treated with NPWT vs nonadherent dressings
Novel Applications and Recent Literature

• Spillebeen et al. *Negative pressure therapy versus passive open abdominal drainage for the treatment of septic peritonitis in dogs: A randomized, prospective study* – *Vet Surg* 2017; **46**: 1086-1097

 – Continued open drainage post-operatively for management of septic peritonitis
 • Passive open abdominal drainage
 • Negative pressure wound therapy
Novel Applications and Recent Literature

- Spillebeen et al. cont...
Novel Applications and Recent Literature

• Spillebeen et al. cont...
 – No statistical differences in measured variables between POAD and NPAD groups
 • Operating time for initial surgery
 • Anaesthesia time for initial surgery
 • Postoperative drainage time
 • Operating time for surgical closure
 • Anaesthesia time for surgical closure
 • Overall bandage costs
 • Survival
 • Diarrhoea
 • Oedema
 • Vomiting/regurgitation
Novel Applications and Recent Literature

- Spillebeen et al. cont...
 – Benefits? Subjectively...

<table>
<thead>
<tr>
<th>Negative pressure abdominal drainage</th>
<th>Passive open abdominal drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced work load</td>
<td>High work load</td>
</tr>
<tr>
<td>Need for bandage changes obviated</td>
<td>Complicated bandage changes</td>
</tr>
<tr>
<td>Reduced patient discomfort</td>
<td>High patient discomfort</td>
</tr>
<tr>
<td>More accurate fluid monitoring</td>
<td>Inaccurate abdominal fluid monitoring</td>
</tr>
<tr>
<td>Reduced risk of nosocomial infections by converting to a closed wound</td>
<td>Increased risk nosocomial infections during bandage changes</td>
</tr>
</tbody>
</table>
Novel Applications and Recent Literature

• Nolff et al. *Negative pressure wound therapy with instillation for body wall reconstruction using an artificial mesh in a Dachshund* – *Aust Vet J* 2015; **93** (10): 367-372

 – First description of instillation therapy (NPWTi) in veterinary literature
Conclusion

- Emerging technique in veterinary medicine with the potential for a plethora of applications
- Some research needs to be done to finesse how the technique is applied
 - Which pressures?
 - For how long?
 - Which material to use?
 - Continuous vs intermittent therapy?
 - Instillation therapy applications?
- Ongoing research to support different applications
- Mechanism of action yet to be fully elucidated
Conclusion
Conclusion
Waylon Wiseman
B. Sc (Hons.), DVM
Resident in Small Animal Surgery

Find us on facebook ℹ️